Silver Conductive Thread 50 Yards / 45 M

Sale price$5.00

Conductive thread can be used like conventional sewing yarn, however it electrically conducts allowing electronics to be integrated into textiles. This makes it ideal for use in a range of e-textile applications.

The thread is plated with silver to make it conductive. The conductive thread has a generally low resistance but it does vary. Once sewn the resistance is typically in the middle of this range. Over time the silver plating will degrade particularly if washed and we have measured in excess of 280 ohms on some of our older examples.

Compare

Product comparison

Give your customers useful information about your products and showcase differences between them.

Type

Electrode

Piezoresistive

Raw Material

Silver

Carbon

Electrical Resistance

0.1 -1 Ω

10⁴–10⁷ Ω

Piezoresistive Resistance Data Sheet

A sandwich structure using conductive PCB silver thin films on the top and bottom layers. Under a 0–2 kg applied force over a 1 cm-diameter contact area, the values shown represent the average of five measurements. This dataset serves as a material performance reference.



01

Durability

Unlike rigid PCB or thin-film materials, conductive textiles provide superior flexibility and stretch, allowing them to bend, compress, and move naturally with the body. This fabric structure maintains conductivity even under repeated deformation, giving textile-based sensors far better durability and comfort for wearable, smart-home, and pressure-sensing applications.




02

Conformability

Conductive fabrics offer exceptional conformability, allowing them to wrap, bend, and adapt smoothly to curved or moving surfaces without losing electrical performance. Their textile structure naturally follows body contours or complex shapes, enabling stable contact and consistent signal response. This makes fabric-based sensors far more versatile than rigid PCB or thin-film materials.


01

Durability

Unlike rigid PCB or thin-film materials, conductive textiles provide superior flexibility and stretch, allowing them to bend, compress, and move naturally with the body. This fabric structure maintains conductivity even under repeated deformation, giving textile-based sensors far better durability and comfort for wearable, smart-home, and pressure-sensing applications.




02

Conformability

Conductive fabrics offer exceptional conformability, allowing them to wrap, bend, and adapt smoothly to curved or moving surfaces without losing electrical performance. Their textile structure naturally follows body contours or complex shapes, enabling stable contact and consistent signal response. This makes fabric-based sensors far more versatile than rigid PCB or thin-film materials.


FAQ